翻訳と辞書
Words near each other
・ Metro 21
・ Metro 3
・ Metric (band)
・ Metric (mathematics)
・ Metric (unit)
・ Metric (vector bundle)
・ Metric Act of 1866
・ Metric Arts
・ Metric Commission
・ Metric connection
・ Metric conversion
・ Metric Conversion Act
・ Metric derivative
・ Metric differential
・ Metric dimension
Metric dimension (graph theory)
・ Metric discography
・ Metric engine (American expression)
・ Metric expansion of space
・ Metric foot
・ Metric gauge
・ Metric Hosiery Company
・ Metric k-center
・ Metric map
・ Metric Martyrs
・ Metric mile
・ Metric modulation
・ Metric outer measure
・ Metric Pixel Canvas
・ Metric prefix


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Metric dimension (graph theory) : ウィキペディア英語版
Metric dimension (graph theory)
In graph theory, the metric dimension of a graph ''G'' is the minimum number of vertices in a subset ''S'' of ''G'' such that all other vertices are uniquely determined by their distances to the vertices in ''S''. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given value, is NP-complete.
== Detailed definition ==
For an ordered subset W = \ of vertices and a vertex ''v'' in a connected graph ''G'', the representation of ''v'' with respect to ''W'' is the ordered ''k''-tuple r(v|W) = (d(v,w_1), d(v,w_2),\dots,d(v,w_k)), where ''d''(''x'',''y'') represents the distance between the vertices ''x'' and ''y''. The set ''W'' is a resolving set (or locating set) for ''G'' if every two vertices of ''G'' have distinct representations. The metric dimension of ''G'' is the minimum cardinality of a resolving set for ''G''. A resolving set containing a minimum number of vertices is called a basis (or reference set) for ''G''. Resolving sets were introduced independently by and .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Metric dimension (graph theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.